Online Recommender System Considering Changes in User's Preference

سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 224

فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JADM-9-2_007

تاریخ نمایه سازی: 20 مرداد 1400

چکیده مقاله:

Recommender systems extract unseen information for predicting the next preferences. Most of these systems use additional information such as demographic data and previous users' ratings to predict users' preferences but rarely have used sequential information. In streaming recommender systems, the emergence of new patterns or disappearance a pattern leads to inconsistencies. However, these changes are common issues due to the user's preferences variations on items. Recommender systems without considering inconsistencies will suffer poor performance. Thereby, the present paper is devoted to a new fuzzy rough set-based method for managing in a flexible and adaptable way. Evaluations have been conducted on twelve real-world data sets by the leave-one-out cross-validation method. The results of the experiments have been compared with the other five methods, which show the superiority of the proposed method in terms of accuracy, precision, recall.

نویسندگان

J. Hamidzadeh

Faculty of computer engineering and information technology, Sadjad University, Mashhad, Iran.

M. Moradi

Faculty of computer engineering and information technology, Sadjad University, Mashhad, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • B. Krawczyk, and A. Cano, “Online ensemble learning with abstaining ...
  • M. Moradi, and J. Hamidzadeh, “Ensemble-based Top-k Recommender System Considering ...
  • F. Amato, V. Moscato, A. Picariello et al., “SOS: a ...
  • V. Maihami, D. Zandi, and K. Naderi, “Proposing a novel ...
  • R. Srikant, and R. Agrawal, “Mining sequential patterns: Generalizations and ...
  • J. Pei, J. Han, B. Mortazavi-Asl et al., “Mining sequential ...
  • H. Zang, Y. Xu, and Y. Li, "Non-redundant sequential association ...
  • A. Da Silva, Y. Lechevallier, and F. A. de Carvalho, ...
  • C. Rana, and S. Jain, “A recommendation model for handling ...
  • C.-W. Li, and K.-F. Jea, “An approach of support approximation ...
  • G. Lee, U. Yun, and K. H. Ryu, “Sliding window ...
  • A. Liu, Y. Song, G. Zhang et al., "Regional concept ...
  • R. Zhang, and Y. Mao, “Movie Recommendation via Markovian Factorization ...
  • S. Zhang, L. Yao, A. Sun et al., “Deep learning ...
  • R. Xu, Y. Cheng, Z. Liu et al., “Improved Long ...
  • R. Mishra, P. Kumar, and B. Bhasker, “A web recommendation ...
  • R. Yera, J. Castro, and L. Martínez, “A fuzzy model ...
  • J. Castro, R. Yera, and L. Martínez, “An empirical study ...
  • S. Bag, S. Kumar, A. Awasthi et al., “A noise ...
  • W. Cheng, G. Yin, Y. Dong et al., “Collaborative Filtering ...
  • M. M. Patil, "Handling Concept Drift in Data Streams by ...
  • Q. Zhang, D. Wu, G. Zhang et al., "Fuzzy user-interest ...
  • K. Laghmari, C. Marsala, and M. Ramdani, “An adapted incremental ...
  • A. Alzogbi, "Time-aware Collaborative Topic Regression: Towards Higher Relevance in ...
  • A. Kangasrääsiö, Y. Chen, D. Głowacka et al., "Interactive modeling ...
  • D.-R. Liu, C.-H. Lai, and W.-J. Lee, “A hybrid of ...
  • T. T. S. Nguyen, H. Y. Lu, and J. Lu, ...
  • R. Agrawal, and R. Srikant, "Mining sequential patterns." pp. ۳-۱۴ ...
  • D. Dubois, and H. Prade, “Rough fuzzy sets and fuzzy ...
  • N. Verbiest, C. Cornelis, and F. Herrera, “FRPS: A fuzzy ...
  • E. Loekito, J. Bailey, and J. Pei, “A binary decision ...
  • نمایش کامل مراجع