CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)

Seismic Attribute Analysis and ۳D Model-Based Approach to Reservoir Characterization of “KO” Field, Niger Delta

عنوان مقاله: Seismic Attribute Analysis and ۳D Model-Based Approach to Reservoir Characterization of “KO” Field, Niger Delta
شناسه ملی مقاله: JR_IJOGST-9-4_001
منتشر شده در در سال 1399
مشخصات نویسندگان مقاله:

James Abe - Ph.D., Department of Applied Geophysics, Federal University of Technology, Akure, Nigeria
Kenneth Okosun - B. Tech., Department of Applied Geophysics, Federal University of Technology, Akure, Nigeria

خلاصه مقاله:
Modelling involves the use of statistical techniques or analogy data to infill the inter-well volume producing images of the subsurface. Integration of available data sets from “KO” field were used to identify hydrocarbon prospects and by means of interpolation, populate the facies and petrophysical distribution across the field to define the reservoir properties for regions with missing logging data[KO۱] . ۳D seismic data, check-shot data, and a series of well logs of four wells were analyzed, and the analysis of the well logs was performed using the well data. The synthetic seismogram produced from the well ties [M.N.۲] [KO۳] was used to map horizon slices across the reservoir regions. Four horizons and fifteen faults, including one growth fault, four major faults, and other minor faults, all in the time domain were mapped. Attribute analyses were carried out, and a ۳D static model comprised of the data from the isochore maps, faults, horizons, seismic attributes, and the various logs generated was built. A stochastic method was also employed in populating the facies and petrophysical models. Two hydrocarbon-bearing sands (reservoirs S۱ and S۲) with depth values ranging from –۱۷۲۹ to ۱۹۲۹ m were mapped. The petrophysical analysis gave porosity values ranging from ۰.۱۸ to ۰.۲۴ across the reservoirs, and the permeability values ranged from ۲۷۹۰ to ۵۶۵۱ mD. The water saturation (Sw) of the reservoirs had an average value of ۵۰% in reservoir S۱ and ۴۷% in reservoir S۲. The depth structure maps generated showed an anticlinal structure in the center of the surfaces, and the mapped faults with the four wells were located in the anticlinal structure. The reserve estimate for the stock tank oil initially in place (STOIIP) of the reservoirs was about ۷۰ mmbbl, and the gas initially in place (GIIP) of the reservoirs ranged from ۲۶۷۱۴ to ۶۳۲۹۴ mmcf. The result of the petrophysical analysis revealed the presence of hydrocarbon at favorable quantities in the wells, while the model showed the distribution of these petrophysical parameters across the reservoirs.   Modelling involves the use of statistical techniques or analogy data to infill the inter-well volume producing images of the subsurface. Integration of available data sets from “KO” field were used to identify hydrocarbon prospects and by means of interpolation, populate the facies and petrophysical distribution across the field to define the reservoir properties for regions with missing logging data[KO۱] . ۳D seismic data, check-shot data, and a series of well logs of four wells were analyzed, and the analysis of the well logs was performed using the well data. The synthetic seismogram produced from the well ties [M.N.۲] [KO۳] was used to map horizon slices across the reservoir regions. Four horizons and fifteen faults, including one growth fault, four major faults, and other minor faults, all in the time domain were mapped. Attribute analyses were carried out, and a ۳D static model comprised of the data from the isochore maps, faults, horizons, seismic attributes, and the various logs generated was built. A stochastic method was also employed in populating the facies and petrophysical models. Two hydrocarbon-bearing sands (reservoirs S۱ and S۲) with depth values ranging from –۱۷۲۹ to ۱۹۲۹ m were mapped. The petrophysical analysis gave porosity values ranging from ۰.۱۸ to ۰.۲۴ across the reservoirs, and the permeability values ranged from ۲۷۹۰ to ۵۶۵۱ mD. The water saturation (Sw) of the reservoirs had an average value of ۵۰% in reservoir S۱ and ۴۷% in reservoir S۲. The depth structure maps generated showed an anticlinal structure in the center of the surfaces, and the mapped faults with the four wells were located in the anticlinal structure. The reserve estimate for the stock tank oil initially in place (STOIIP) of the reservoirs was about ۷۰ mmbbl, and the gas initially in place (GIIP) of the reservoirs ranged from ۲۶۷۱۴ to ۶۳۲۹۴ mmcf. The result of the petrophysical analysis revealed the presence of hydrocarbon at favorable quantities in the wells, while the model showed the distribution of these petrophysical parameters across the reservoirs.  [KO۱]Sentence has been rephrased.  [M.N.۲]This verb does not make sense in this context and has made the sentence unclear.  [KO۳]Sentence has been rephrased  

کلمات کلیدی:
Reservoir characterization, Seismic attributes, ۳D Static Modeling

صفحه اختصاصی مقاله و دریافت فایل کامل: https://civilica.com/doc/1259215/