CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)

DFT Studies on ۱۰ Chromenes Derivatives Performance as Sensing Materials for Electrochemical Detection of Lithium (I)

عنوان مقاله: DFT Studies on ۱۰ Chromenes Derivatives Performance as Sensing Materials for Electrochemical Detection of Lithium (I)
شناسه ملی مقاله: JR_IJNC-11-3_001
منتشر شده در در سال 1403
مشخصات نویسندگان مقاله:

Bahram Hassani - Department of Food Industry, Faculty of Agriculture, Ferdowsi University of Mashhad,Mashhad, Iran
Maryam Karimian - Department of Endocrinology and Metabolism, Medical Sciences University of Ilam, Iran
Nazila Ghoreishi Amin - Department of Radiology, Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA

خلاصه مقاله:
In this study, we have conducted a detailed analysis of ۱۰ recently synthesized chromen derivatives to evaluate their performance as electrocatalytic sensing materials for the detection of Li+ ions. Our investigation involved the use of Infra-red (IR) and frontier molecular orbital (FMO) computations to gain insights into the interactions between these derivatives and Li+ ions. The results obtained from our analysis revealed that the derivative with NO۲ substitution in the meta position of the benzene ring exhibited the strongest interaction with Li+ ions. This was observed in both vacuum and aqueous phases, with Kf values of ۵.۴۲۹×۱۰+۴۸ and ۱.۰۳۶×۱۰+۲۳, respectively. Such a strong interaction suggests that this derivative has the potential to be an excellent candidate for the development of electrochemical sensors for the detection of Li+ ions. Furthermore, we also investigated the changes in the bandgap of this derivative during the complexation process. Our findings indicated that this particular derivative experienced the most significant changes in its bandgap, with a percentage decrease of -۵۰.۸۲۴. This observation highlights its potential as a selective and sensitive recognition element for the detection of Li+ ions. Overall, our research provides valuable insights into the performance of these chromen derivatives as electrocatalytic sensing materials for Li+ ion detection. The derivative with NO۲ substitution in the meta position of the benzene ring emerges as a promising candidate due to its strong interaction with Li+ ions and significant changes in its bandgap during complexation. These findings pave the way for the development of new and improved electrochemical sensors for the detection of Li+ ions, which can have significant implications in various fields such as energy storage and battery technologies.

کلمات کلیدی:
Chromenes, density functional theory, sensor, Complexation, Li+

صفحه اختصاصی مقاله و دریافت فایل کامل: https://civilica.com/doc/1879403/