Numerical investigation of the effect of different parameters on emitted shockwave from bubble collapse in a nozzle

سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 211

فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JPST-6-2_002

تاریخ نمایه سازی: 2 دی 1400

چکیده مقاله:

Cavitation can be extremely beneficial for the first spray breakup and to enhance atomization quality. An Eulerian/Lagrangian approach using Reynolds average Navier-Stokes (RANS) and bubble dynamic equations was used for the prediction of cavitation inception. A comprehensive validation was also performed using the Eulerian and Lagrangian equations in the current numerical approach. First, the carrying liquid was simulated by the finite volume method in order to obtain pressure and velocity in the whole computational domain, and a one-way coupling between the Eulerian and Lagrangian parts was used. The Reynolds stress transport model (RSTM) was used for calculating turbulent parameters, and the continuous filter white noise (CFWN) model was used for modeling fluctuating terms of velocity. Rayleigh-Plesset and a modified form of the bubble motion equation were also applied to study the bubble dynamic and bubble position inside the nozzle. A modified form of critical pressure was also used to evaluate critical pressure as cavitation starts and showed critical pressure increases significantly as cavitation starts. The bubble shock wave due to the first and second bubble collapse was predicted in the cavitating and non-cavitating flow. A shock wave due to the bubble’s first collapse in cavitation inception conditions increased to ۲۸ Mpa. Results showed that increasing the pressure difference can severely increase the shockwave while increasing the initial radius will decrease the amount of the emitted shockwave. Effects of surface tension, dynamic viscosity, and liquid density on bubble dynamic were evaluated.

نویسندگان

Miralam Mahdi

Department of Mechanical Engineering, Shahid Rajaee Training Teacher University, Tehran, Iran

Seyed Mohammad Javad zeidi

Department of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • S.M.J. Zeidi, M. Mahdi, Evaluation of the physical forces exerted ...
  • D. Schmidt, M. Corradini, The internal flow of diesel fuel ...
  • S. Malavasi, V.M. Gianandrea, Dissipation and cavitation characteristics of single-hole ...
  • D.P. Schmidt۱, Cavitation in diesel fuel injector nozzles, PhD thesis, ...
  • M. Altimira, L. Fuchs, Numerical investigation of throttle flow under ...
  • A. Sou, B. Bicer, A. Tomiyama, Numerical simulation of incipient ...
  • Q. Xue, M. Battistoni, C.F. Powell, D.E. Longman, S.P. Quan, ...
  • F.J. Salvador, M. Carreres, D. Jaramillo, J. Martínez-López, Comparison of ...
  • T. Chien-Chou, W. Li-Jie, Investigations of empirical coefficients of cavitation ...
  • D.P. Schmidt, Theoretical analysis for achieving high-order spatial accuracy in ...
  • R.S. Meyer, M.L. Billet, J.W. Holl, Freestream nuclei and traveling-bubble ...
  • G.L. Chahine, Numerical Simulation of Cavitation Dynamics, Dynaflow, Inc., Maryland, ...
  • K.J. Farrell, Eulerian/Lagrangian analysis for the prediction of cavitation inception, ...
  • C.F. Delale, Steady–state cavitating nozzle flows with nucleation, Fifth International ...
  • X. Zhang, G. Ahmadi, Euleria-Lagraungian simulations of liquid-gas-solid flows in ...
  • M. Mahdi, M. Shams, R. Ebrahimi, Numerical simulation of scaling ...
  • E. Giannadakis, M. Gavaises, C. Arcoumanis, Modelling of cavitation in ...
  • N. Ochia, Y. Iga, M. Nohmi, T. Ikohagi, Study of ...
  • B. Wolfrum, Cavitation and shock wave effects on biological systems, ...
  • M. Mahdi, M. Shams, R. Ebrahimi, Effects of heat transfer ...
  • B.F. Launder, G.J. Reece, Progress in the development of a ...
  • M. Shams, G. Ahmadi, Computational modeling of flow and sediment ...
  • B.J. Daly, F.H. Harlow, Transport equation in turbulence, Aerosol Sci. ...
  • R. Lofstedt, B.P. Burber, S.J. Putterman, Toward a hydrodynamic theory ...
  • C.T. Hsiao, G. Chorine, Prediction of vortex cavitation inception using ...
  • M.R. Maxey, J.J. Riley, Equation of motion for a small ...
  • A.K. Singhal, M.M. Athavale, H. Li, Y. Jiang, Mathematical basis ...
  • F.R. Gilmore, Hydrodynamic Laboratory Report ۲۶.۴, California Institute of Technology, ...
  • E. Winklhofer, E. Kull, E. Kelz, A. Morozov, Comprehensive hydraulic ...
  • S.M.J. Zeidi, M. Mahdi, Investigation effects of injection pressure and ...
  • Effects of nozzle geometry and fuel characteristics on cavitation phenomena in injection nozzles [مقاله کنفرانسی]
  • Investigation of viscosity effect on velocity profile and cavitation formationin diesel injector nozzle [مقاله کنفرانسی]
  • نمایش کامل مراجع