Modeling transport in graphene-metal contact and verifying transfer length method characterization

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 71

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JECEI-11-2_010

تاریخ نمایه سازی: 4 تیر 1402

چکیده مقاله:

kground and Objectives: One of the common methods for measuring the contact resistance of graphene sheets is the transfer length or transmission line method (TLM). Apart from the contact resistance, TLM gives the resistance of the channel sheet and the effective transfer length of the measured samples. Furthermore, the implementation of TLM is simple. To analyze this method, one can use circuit modeling (CM).Methods: An important parameter of TLM is the contact resistance between the metal electrode and the graphene channel. To compare this parameter with other measures, it is normalized by multiplying it by the channel width. In this research, for TLM analysis, all the components of the structure including electrodes, graphene channel, and metal-graphene contact are modeled in a circuit.Results: PSpice and MATLAB are integrated for TLM circuit modeling. The metal electrodes and the graphene channel are modeled based on the values of the resistances measured in the laboratory using the van der Pauw method and the resistances reported in the article in ohms per square. Moreover, the metal-graphene contact resistance is considered based on the values reported in the literature in ohms-micrometers.Conclusion: The modeling results show that, in addition to the effective transfer length, the effective transfer width can be defined on a contact, according to the dimensions of the structure. Therefore, the channel width is a vague characteristic of the TLM measurement, which plays a very important role in measuring contact resistance. Furthermore, the contact resistance and the resistance of the channel sheet are independent of each other and of the distance between the contacts. If defects in the graphene channel are randomly distributed along the channel between the contacts, they do not have a significant impact on the contact resistance, while they increase the resistance of the graphene sheet provided that they do not disrupt the channel. Indeed, for a ۱۰% defect (or ۹۰% coverage along the channel), the resistance of the sheet increases by ۱۶%. In addition, by using this modeling, parameters such as the distribution of the contact current, the sources of errors, and their influence in determining the contact resistance and resistance of the channel sheet are investigated.

نویسندگان

B. Khosravi Rad

Optoelectronics and Nanophotonics Research Group, Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran.

M. Khaje

Department of Electrical Engineering, Faculty of Electronic and Computer Engineering, Malek Ashtar University of Technology, Tehran, Iran.

A. Eslami Majd

Faculty of Electrical and Computer Engineering, Malek Ashtar University of Technology, Tehran, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • L. Anzi et al., "Ultra-low contact resistance in graphene devices ...
  • Y. M. Lin et al., "Development of graphene FETs for ...
  • K. Kim, J. Y. Choi, T. Kim, S. H. Cho, ...
  • J. Zheng et al., "Sub-۱۰ nm gate length graphene transistors: ...
  • W. Zhu et al., "Graphene radio frequency devices on flexible ...
  • Y. Wu et al., "High-frequency, scaled graphene transistors on diamond-like ...
  • M. R. Islam, M. A. Haque, M. Fahim-Al-Fattah, M. N. ...
  • Y. Wu et al., "RF performance of short channel graphene ...
  • A. Mehrfar, A. Eslami Majd, "Enhancement of the photoresponse in ...
  • D. K. Schroder, Semiconductor material and device characterization. John Wiley ...
  • V. Passi et al., "Contact resistance Study of “edge-contacted” metal-graphene ...
  • B. K. Bharadwaj, D. Nath, R. Pratap, S. Raghavan, "Making ...
  • A. Quellmalz et al., "Influence of humidity on contact resistance ...
  • V. Passi et al., "Ultralow specific contact resistivity in metal–graphene ...
  • J. Anteroinen, W. Kim, K. Stadius, J. Riikonen, H. Lipsanen, ...
  • J. Moon et al., "Ultra-low resistance ohmic contacts in graphene ...
  • F. Giubileo, A. Di Bartolomeo, "The role of contact resistance ...
  • A. Gahoi, S. Wagner, A. Bablich, S. Kataria, V. Passi, ...
  • S. Burzhuev, "Decreasing Graphene Contact Resistance by Increasing Edge Contact ...
  • M. Houssa, A. Dimoulas, A. Molle, ۲D materials for nanoelectronics. ...
  • G. Vincenzi, "Graphene: FET and Metal Contact Modeling. Graphène: modélisation ...
  • P. Zhang, Y. Lau, R. Gilgenbach, "Analysis of current crowding ...
  • G. González-Díaz et al., "A robust method to determine the ...
  • F. Liu, W. T. Navaraj, N. Yogeswaran, D. H. Gregory, ...
  • K. A. Jenkins, "Graphene in high-frequency electronics: This two-dimensional form ...
  • F. Urban, G. Lupina, A. Grillo, N. Martucciello, A. Di ...
  • P. Zhang, Y. Lau, "An exact field solution of contact ...
  • W. S. Leong, H. Gong, J. T. Thong, "Low-contact-resistance graphene ...
  • K. Nagashio, T. Nishimura, K. Kita, A. Toriumi, "Contact resistivity ...
  • A. Venugopal, L. Colombo, E. Vogel, "Contact resistance in few ...
  • S. M. Popescu, A. J. Barlow, S. Ramadan, S. Ganti, ...
  • نمایش کامل مراجع