Thermal Characterization of Eicosane/Graphite Nano-Composite-Based Phase Change Material

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 83

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JREE-10-4_002

تاریخ نمایه سازی: 25 آذر 1402

چکیده مقاله:

Phase Change Materials (PCMs) have received much consideration as thermal energy storage systems due to their high storage capacity. However, their heat transfer rate is limited because of the low thermal conductivity. Incorporating of carbon-based nanoparticles into the matrix of PCMs with good dispersion can be an efficient way to solve their deficiency. In this research, graphite nanoparticles were homogeneously dispersed within the Eicosane PCM matrix to prepare a Nano-Enhanced PCM (NEPCM). The main objective is to determine the optimum amount of graphite to maximize the thermal properties of NEPCM composites. The Scanning Electron Microscopy (SEM) images of the prepared nanocomposites confirmed the excellent dispersion of graphite nanoparticles within the Eicosane layers through an ultrasonic bath-assisted homogenization procedure followed by solidification. In addition, Differential Scanning Calorimetry (DSC) and Thermal Conductivity Evaluation (TC) of the samples were conducted to determine their heat capacity and thermal diffusivity. The results illustrated that the more the number of graphite nanoparticles, the larger the number of collisions between graphite and Eicosane. As the nanoparticle content increased, the thermal conductivity and diffusivity were enhanced, as well. Numerically, the maximum thermal conductivity was ۴.۱ W/m K for the composite containing ۱۰ wt% graphite, ۱۵.۶۶ times that of the pure Eicosane. Furthermore, increasing crystal growth and reducing heat capacity for the large number of nanoparticles in the composite were discussed. The significantly improved thermal properties of the prepared NEPCMs with an optimal nanoparticle content could make them applicable for different thermal management applications.

نویسندگان

Ala Moradi

Computational Fluid Dynamics (CFD) Research Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Tehran, Iran.

Hajar Es-haghi

Iran Space Institute, P. O. Box: ۱۳۴۵۵/۷۵۴, Tehran, Iran.

Seyed Hassan Hashemabadi

Computational Fluid Dynamics (CFD) Research Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Tehran, Iran.

Majid Haghgoo

Iran Space Institute, P. O. Box: ۱۳۴۵۵/۷۵۴, Tehran, Iran.

Zahra Emami

Department of Material Science and Engineering, Sharif University of Technology, P. O. Box: ۱۴۵۸۸ ۸۹۶۹۴, Tehran, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :