Effect of Stable Nano-microbubbles on Sulfide Copper Flotation and Reduction of Chemicals Dosage

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 55

فایل این مقاله در 23 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JMAE-15-1_014

تاریخ نمایه سازی: 20 دی 1402

چکیده مقاله:

Generally, mineral processing plants generate a large quantity of waste in the form of fine particles. The flotation speed of mineral microbubbles by coarse bubbles is dramatically higher than that of individual particles. The advantage of microbubbles is due to the increase of binding efficiency of conventional bubbles with fine particles coated with microbubbles. Here, the focus is on reducing chemicals consumption and improving recovery. After preparing a representative sample, XRF, XRD, and mineralogical analyses were performed. Then ۵۰ experiments were selected by experimental design using the response surface method (RSM), and in the form of central Composite design (CCD) by (design expert) DX ۱۳ software. The interactions of collector consumption, frother agent, pH, particle size, and solid percentage were investigated, and ۲۵ experiments using typical flotation and without nano-microbubbles and others with nano-microbubbles were conducted. The laboratory standard limit of the collector used in the pilot plant of the Sarcheshmeh Copper copper complex is ۴۰ g/t (۲۵ g/t of C۷۲۴۰ plus ۱۵ g/t of Z۱۱). Here, by consuming ۲۰ g/t of collector in the absence of nanomicrobubbles, a recovery of ۷۹.۹۶% and in the presence of nanomicrobubbles, a recovery of ۸۰.۰۷% was obtained, that is a ۵۰% reduction in collector consumption and a ۰.۱۱% increase in recovery was observed. Also the laboratory standard limit of frother used in the pilot plant of Sarcheshemeh Copper Complex is ۳۰ g/t (۱۵ g/t of MIBC plus ۱۵ g/t of A۶۵). Here, by using ۱۰ g/t of frother in the absence of nanomicrobubbles, a recovery of ۷۸.۱۲%, and in the presence of nanomicrobubbles, a recovery of ۸۲.۰۵% was obtained. In other words, a decrease of ۶۶.۶% in the consumption of frother and an increase of ۱.۹۳% in recovery was observed.

نویسندگان

Ali Nikouei Mahani

Faculty of Mining, Petroleum & Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran.

Mohammad Karamoozian

Faculty of Mining, Petroleum & Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran.

Mohammad Jahani Chegeni

Faculty of Mining, Petroleum & Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran.

Mohammad Mahmoodi Meymand

Research and Development Division, Sarcheshmeh Copper Mine, National Iranian Copper Industries Company, Rafsanjan, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • . Trahar, W. J. (۱۹۸۱). A rational interpretation of the ...
  • . Ahmed, N. and Jameson, G. J. (۱۹۸۵). The effect ...
  • . Yoon, R. H. and Luttrell, G. H. (۱۹۸۶). The ...
  • . Ding, S., Xing, Y., Zheng, X., Zhang, Y., Cao, ...
  • . Lei, W., Zhang, M., Zhang, Z., Zhan, N., and ...
  • . Liu, L., Hu, S., Wu, C., Liu, K., Weng, ...
  • . Tao, D., Wu, Z., and Sobhy, A. (۲۰۲۱). Investigation ...
  • . Zhou, W., Chen, H., Ou, L., and Shi, Q. ...
  • . Zhou, W., Niu, J., Xiao, W., and Ou, L. ...
  • . Matis, K. A., Gallios, G. P., and Kydros, K. ...
  • . Ansari, M. I. (۱۹۹۷). Fine particle processing-A difficult problem ...
  • . Yalcin, T. and Byers, A. (۲۰۰۶). Dissolved gas flotation ...
  • . Maoming, F. A. N., Daniel, T. A. O., Honaker, ...
  • . Maoming, F. A. N., Daniel, T. A. O., HONAKER, ...
  • . Jameson, G. J. (۲۰۱۰). Advances in fine and coarse ...
  • . Ushikubo, F. Y., Furukawa, T., Nakagawa, R., Enari, M., ...
  • . Miettinen, T., Ralston, J., and Fornasiero, D. (۲۰۱۰). The ...
  • . Albijanic, B., Amini, E., Wightman, E., Ozdemir, O., Nguyen, ...
  • . Albijanic, B., Bradshaw, D. J., and Nguyen, A. V. ...
  • . Calgaroto, S., Wilberg, K. Q., and Rubio, J. (۲۰۱۴). ...
  • . Mazahernasab, R. and Ahmadi, R. (۲۰۱۶). Determination of bubble ...
  • . Leistner, T., Peuker, U. A., and Rudolph, M. (۲۰۱۷). ...
  • . Rulyov, N., Nessipbay, Т., Dulatbek, T., Larissa, S., & ...
  • . Nazari, S., Shafaei, S. Z., Gharabaghi, M., Ahmadi, R., ...
  • . de Medeiros, A. R. S. and Baltar, C. A. ...
  • . Tao, D. and Sobhy, A. (۲۰۱۹). Nanobubble effects on ...
  • . Ebrahimi, H., Karamoozian, M., and Saghravani, S. F. (۲۰۲۲). ...
  • . Farrokhpay, S., Filippova, I., Filippov, L., Picarra, A., Rulyov, ...
  • . Farrokhpay, S., Filippov, L., and Fornasiero, D. (۲۰۲۱). Flotation ...
  • . Li, C., Xu, M., Xing, Y., Zhang, H., and ...
  • . Chang, G., Xing, Y., Zhang, F., Yang, Z., Liu, ...
  • . Nazari, S. and Hassanzadeh, A. (۲۰۲۰). The effect of ...
  • . Sobhy, A., Wu, Z., and Tao, D. (۲۰۲۱). Statistical ...
  • . Zhang, Z., Ren, L., and Zhang, Y. (۲۰۲۱). Role ...
  • . Li, C. and Zhang, H. (۲۰۲۲). A review of ...
  • . Li, C. and Zhang, H. (۲۰۲۲). Surface nanobubbles and ...
  • . Schubert, H. (۲۰۰۵). Nanobubbles, hydrophobic effect, heterocoagulation and hydrodynamics ...
  • . Hampton, M. A. and Nguyen, A. V. (۲۰۰۹). Systematically ...
  • . Montgomery, D. C. (۲۰۰۱). Design and analysis of experiments. ...
  • . Myers, R. H., Montgomery, D. C., and Anderson-Cook, C. ...
  • . Hinkelman, K., Kempthorne, O., and Kshivsagar, A. M. (۱۹۹۶). ...
  • . Kincl, M., Turk, S., and Vrečer, F. (۲۰۰۵). Application ...
  • . Simate, G. S., Ndlovu, S., and Gericke, M. (۲۰۰۹). ...
  • . Niaki, R., Abazarpoor, A., Halali, M., Maarefvand, M., and ...
  • . Behera, S. K., Meena, H., Chakraborty, S., and Meikap, ...
  • . Sahu, J. N., Acharya, J., and Meikap, B. C. ...
  • . Vazifeh, Y., Jorjani, E., and Bagherian, A. (۲۰۱۰). Optimization ...
  • . Rao, G. V. and Mohanty, S. (۲۰۰۲). Optimization of ...
  • . Aslan, N. E. V. Z. A. T. and Fidan, ...
  • . Mehrabani, J. V., Noaparast, M., Mousavi, S. M., Dehghan, ...
  • . Kwak, J. S. (۲۰۰۵). Application of Taguchi and response ...
  • . Awe, S. A., Khoshkhoo, M., Kruger, P., and SANDSTROeM, ...
  • . Bezerra, M. A., Santelli, R. E., Oliveira, E. P., ...
  • . Rakić, T., Kasagić-Vujanović, I., Jovanović, M., Jančić-Stojanović, B., and ...
  • . Box, G. E. and Hunter, J. S. (۱۹۵۷). Multi-factor ...
  • . Kafshgari, L. A., Ghorbani, M., Azizi, A., Agarwal, S., ...
  • . Arefi, A. (۲۰۱۵). Application of micro/nanobubbles and nanomaterials in ...
  • . Tao, Y., Liu, J., Yu, S., and Tao, D. ...
  • . Zhang, X. Y., Wang, Q. S., Wu, Z. X., ...
  • نمایش کامل مراجع