Predicting the Inelastic Response of Base Isolated Structures Utilizing Regression Analysis and Artificial Neural Network

سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 29

فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_CEJ-8-6_007

تاریخ نمایه سازی: 1 اردیبهشت 1403

چکیده مقاله:

Indeed, utilizing a base isolation system in RC structures can remarkably minimize the possibility of failure, particularly in seismic-prone countries. Despite that, the design of these structures is a long procedure that consists of choosing the appropriate isolator to optimize the nonlinear behavior of the superstructure. Moreover, the numerical simulations require huge computational effort when high accuracy is required. In recent decades, scientists and engineers have applied numerous estimation approaches such as multiple linear regression and artificial neural networks to decrease the required cost and time for daily design problems. Thus, this study's main objective is to solve the difficulty of rapid response prediction by using soft-computing techniques. Additionally, it aims to study the capability of multiple linear regression and artificial neural networks in estimating the seismic performance of base-isolated RC structures under earthquakes. A nonlinear response history analysis of four different lead rubber-bearing isolated RC structures will be performed in order to determine the responses of these structures. Subsequently, the prediction models will be developed using the responses of the structures as inputs for multiple linear regression and artificial neural networks. Lastly, the reliability of both estimation approaches in terms of the response of base-isolated structures will be investigated by comparing the prediction models' capability. In general, the results of the study show that artificial neural networks provide considerably better accuracy in estimating base-isolated structures compared to multiple linear regression, and their performance results in reliable prediction. Doi: ۱۰.۲۸۹۹۱/CEJ-۲۰۲۲-۰۸-۰۶-۰۷ Full Text: PDF

کلیدواژه ها:

Reinforced Concrete ، Lead Rubber Bearing Isolator ، Pulse-Like and Non-Pulse-Like Earthquakes ، Multiple Linear Regression ، Artificial Neural Network.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Kitayama, S., & Constantinou, M. C. (2018). Seismic Performance of ...
  • Seo, C. Y., Karavasilis, T. L., Ricles, J. M., & ...
  • Symans, M. D., Cofer, W. F., & Fridley, K. J. ...
  • Robinson, W. H. (1982). Lead-rubber hysteretic bearings suitable for protecting ...
  • Sasaki, T., Sato, E., Ryan, K. L., Okazaki, T., Kajiwara, ...
  • Rong, Q. (2020). Optimum parameters of a five-story building supported ...
  • Jibson, R. W. (2007). Regression models for estimating coseismic landslide ...
  • Carrillo, J., & Alcocer, S. M. (2012). Backbone model for ...
  • Kaviani, P., Zareian, F., & Taciroglu, E. (2012). Seismic behavior ...
  • Adam, B., & Smith, I. F. C. (2008). Active tensegrity: ...
  • Prasad, B. K. R., Eskandari, H., & Reddy, B. V. ...
  • Maqsoom, A., Aslam, B., Gul, M. E., Ullah, F., Kouzani, ...
  • Singh, P., Bhardwaj, S., Dixit, S., Shaw, R.N., Ghosh, A. ...
  • Feng, D. C., Liu, Z. T., Wang, X. D., Chen, ...
  • Lee, T. L., Lin, H. M., & Lu, Y. P. ...
  • Chakraborty, A., & Goswami, D. D. (2017). Slope Stability Prediction ...
  • Bakhary, N., Hao, H., & Deeks, A. J. (2007). Damage ...
  • Chakraverty, S., Gupta, P., & Sharma, S. (2010). Neural network-based ...
  • Adeli, H., & Panakkat, A. (2009). A probabilistic neural network ...
  • Maya, M., Yu, W., & Telesca, L. (2022). Multi-Step Forecasting ...
  • Kuang, W., Yuan, C., & Zhang, J. (2021). Network-based earthquake ...
  • ASCE/SEI 7-22. (2022). Minimum Design Loads and Associated Criteria for ...
  • Xu, F., Zhang, X., Xia, X., & Shi, J. (2022). ...
  • Hwang, J. S., & Chiou, J. M. (1996). An equivalent ...
  • ACI 318-19. (2019). Building Code Requirements for Structural Concrete and ...
  • NIST GCR 17-917-46v3. (2017). Guidelines for Nonlinear Structural Analysis for ...
  • Mander, J. B., Priestley, M. J. N., & Park, R. ...
  • Park, R., & Paulay, T. (1991). Reinforced concrete structures. John ...
  • Kalantari, A., & Roohbakhsh, H. (2020). Expected seismic fragility of ...
  • Kangda, M. Z., & Bakre, S. (2018). The Effect of ...
  • FEMA P695. (2009). Quantification of building seismic performance factors. Federal ...
  • ASCE/SEI 7-10. (2013). Minimum design loads for buildings and other ...
  • Michaud, D., & Léger, P. (2014). Ground motions selection and ...
  • Sinharay, S. (2010). An overview of statistics in education. International ...
  • Achen, C. H. (1982). Interpreting and using regression (Vol. 29). ...
  • Kompoliti, K., & Metman, L. V. (2010). Encyclopedia of movement ...
  • Pandelea, A., Budescu, M. & Covatariu, G. (2014). Applications of ...
  • Topçu, I. B., & Saridemir, M. (2007). Prediction of properties ...
  • Alshihri, M. M., Azmy, A. M., & El-Bisy, M. S. ...
  • Hagan, M. T., & Menhaj, M. B. (1994). Training Feedforward ...
  • Marquardt, D. W. (1963). An Algorithm for Least-Squares Estimation of ...
  • FEMA 451B. (2007). NEHRP Recommended Provisions for New Buildings and ...
  • Rahimi, F., Aghayari, R., & Samali, B. (2020). Application of ...
  • Asuero, A. G., Sayago, A., & González, A. G. (2006). ...
  • Vatcheva, K. P., & Lee, M. (2016). Multicollinearity in Regression ...
  • Khademi, F., Jamal, S. M., Deshpande, N., & Londhe, S. ...
  • Patil, S. V., Balakrishna Rao, K., & Nayak, G. (2021). ...
  • نمایش کامل مراجع