Predictive Models to Evaluate the Interaction Effect of Soil-Tunnel Interaction Parameters on Surface and Subsurface Settlement

سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 27

فایل این مقاله در 21 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_CEJ-8-11_005

تاریخ نمایه سازی: 2 اردیبهشت 1403

چکیده مقاله:

Nowadays, the need for subway tunnels has increased considerably with urbanization and population growth in order to facilitate movements. In urban areas, subway tunnels are excavated in shallow depths under densely populated areas and soft ground. Its associated hazards include poor ground conditions and surface settlement induced by tunneling. Various sophisticated variables influence the settlement of the ground surface caused by tunneling. The shield machine's operational parameters are critical due to the complexity of shield-soil interactions, tunnel geometry, and local geological parameters. Since all elements appear to have some effect on tunneling-induced settlement, none stand out as particularly significant; it might be challenging to identify the most important ones. This paper presents a new model of an artificial neural network (ANN) based on the partial dependency approach (PDA) to optimize the lack of explainability of ANN models and evaluate the sensitivity of the model response to tunneling parameters for the prediction of ground surface and subsurface settlement. For this purpose, ۲۳۹ and ۱۰۴ points for monitoring surface and subsurface settlement, respectively, were obtained from line Y, the west bond of Crossrail tunnels in London. The parameters of the ground surface, the trough, and the tunnel boring machine (TBM) were used to categorize the ۱۲ potential input parameters that could impact the maximum settlement induced by tunneling. An ANN model and a standard statistical model of multiple linear regression (MLR) were also used to show the capabilities of the ANN model based on PDA in displaying the parameter's interaction impact. Performance indicators such as the correlation coefficient (R۲), root mean square error (RMSE), and t-test were generated to measure the prediction performance of the described models. According to the results, geotechnical engineers in general practice should attend closely to index properties to reduce the geotechnical risks related to tunneling-induced ground settlement. The results revealed that the interaction of two parameters that have different effects on the target parameter could change the overall impact of the entire model. Remarkably, the interaction between tunneling parameters was observed more precisely in the subsurface zone than in the surface zone. The comparison results also indicated that the proposed PDA-ANN model is more reliable than the ANN and MLR models in presenting the parameter interaction impact. It can be further applied to establish multivariate models that consider multiple parameters in a single model, better capturing the correlation among different parameters, leading to more realistic demand and reliable ground settlement assessments. This study will benefit underground excavation projects; the experts could make recommendations on the criteria for settlement control and controlling the tunneling parameters based on predicted results. Doi: ۱۰.۲۸۹۹۱/CEJ-۲۰۲۲-۰۸-۱۱-۰۵ Full Text: PDF

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Zhao, J., Shi, M., Hu, G., Song, X., Zhang, C., ...
  • Groensfelder, T., Giebeler, F., Geupel, M., Schneider, D., & Jaeger, ...
  • Ghiasi, V., & Koushki, M. (2020). Numerical and artificial neural ...
  • Sheil, B. B., Suryasentana, S. K., Mooney, M. A., Zhu, ...
  • Sakurai, S., Akutagawa, S., Takeuchi, K., Shinji, M., & Shimizu, ...
  • Huang, Z., Argyroudis, S. A., Pitilakis, K., Zhang, D., & ...
  • Ding, Z., Zhao, L.-S., Zhou, W.-H., & Bezuijen, A. (2022). ...
  • Chen, C., He, W., Zhou, H., Xue, Y., & Zhu, ...
  • Das, S. K., Samui, P., Sabat, A. K., & Sitharam, ...
  • Avci, O., Bhargava, A., Nikitas, N., & Inman, D. J. ...
  • Benardos, A. G., & Kaliampakos, D. C. (2004). Modelling TBM ...
  • Suwansawat, S., & Einstein, H. H. (2006). Artificial neural networks ...
  • Boubou, R., Emeriault, F., & Kastner, R. (2010). Artificial neural ...
  • Boubou, R., Emeriault, F., & Kastner, R. (2012). Prediction of ...
  • Torabi, S. R., Shirazi, H., Hajali, H., & Monjezi, M. ...
  • Khatami, S. A., Mirhabibi, A., Khosravi, A., & Nahavandi, S. ...
  • Mohammadi, S. D., Naseri, F., & Alipoor, S. (2015). Development ...
  • Chen, R. P., Zhang, P., Kang, X., Zhong, Z. Q., ...
  • Khalili, A., Ahangari, K., Ghaemi, M., & Zarei, H. (2018). ...
  • Moghaddasi, M. R., & Noorian-Bidgoli, M. (2018). ICA-ANN, ANN and ...
  • Habibagahi, G., & Bamdad, A. (2003). A neural network framework ...
  • Shreyas, S. K., & Dey, A. (2019). Application of soft ...
  • Neaupane, K. M., & Adhikari, N. R. (2006). Prediction of ...
  • Attah, I. C., & Etim, R. K. (2020). Experimental investigation ...
  • Wan, S. P. (2014). Field monitoring of ground response to ...
  • Standing, J. R., & Selemetas, D. (2013). Greenfield ground response ...
  • Wan, M. S. P., & Standing, J. R. (2014). Lessons ...
  • DE Freitas, M. H., & Mannion, W. G. (2011). A ...
  • Hight, D. W., McMillan, F., Powell, J. J. M., Jardine, ...
  • Gasparre, A. (2005). Advanced laboratory characterisation of London Clay. Ph.D. ...
  • Gong, C., Ding, W., & Xie, D. (2020). Twin EPB ...
  • Nishimura, S., Minh, N. A., & Jardine, R. J. (2007). ...
  • Wongsaroj, J., Soga, K., Yimsiri, S., & Mair, R. J. ...
  • Gasparre, A., Nishimura, S., Minh, N. A., Coop, M. R., ...
  • Hight, D. W., Gasparre, A., Nishimura, S., Jardine, R. J., ...
  • Haas, M., Mongeard, L., Ulrici, L., D'Aloïa, L., Cherrey, A., ...
  • Sandström, M. (2016). Numerical Modelling and Sensitivity Analysis of Tunnel ...
  • Wang, X., Lu, H., Wei, X., Wei, G., Behbahani, S. ...
  • Basheer, I. A., & Hajmeer, M. (2000). Artificial neural networks: ...
  • Kayri, M. (2016). Predictive abilities of Bayesian regularization and levenberg-marquardt ...
  • Doan, C. D., & Liong, S. Y. (2004, July). Generalization ...
  • Burden, F., & Winkler, D. (2008). Bayesian regularization of neural ...
  • Stangierski, J., Weiss, D., & Kaczmarek, A. (2019). Multiple regression ...
  • Zhang, W. G., Li, H. R., Wu, C. Z., Li, ...
  • Apley, D. W., & Zhu, J. (2020). Visualizing the effects ...
  • Zhao, C., Lavasan, A. A., Hölter, R., & Schanz, T. ...
  • Persson, E. (2017). Empirical correlation between undrained shear strength and ...
  • Singh, D. K., Aromal, V., & Mandal, A. (2020). Prediction ...
  • نمایش کامل مراجع