On the Thermal Conductivity of Carbon Nanotube/Polypropylene Nanocomposites by Finite Element Method

سال انتشار: 1397
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 541

فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JCAM-49-1_009

تاریخ نمایه سازی: 18 تیر 1398

چکیده مقاله:

In this paper, finite element method is used to obtain thermal conductivity coefficients of single-walled carbon nanotube reinforced polypropylene. For this purpose, the two-dimensional representative volume elements are modeled. The effect of different parameters such as nanotube dispersion pattern, nanotube volume percentage in polymer matrix, interphase thickness between nanotube and surrounded matrix and nanotube aspect ratio on the thermal conductivity coefficient of nanotube/polypropylene nanocomposite are investigated. For the dispersion pattern, three different algorithms, including random dispersion, regular dispersion along the temperature difference and regular dispersion perpendicular to the temperature difference are employed. Furthermore, the temperature is considered in the range of 0°C to 200°C. The nanotube volume percentage in the polymer matrix is selected as 1%, 3% and 5%. It is shown that the polypropylene matrix reinforced by the regular distribution of nanotubes directed parallel to the temperature difference leads to the largest thermal conductivity coefficients. Besides, the nanocomposites with larger volume percentages of carbon nanotubes possess larger thermal conductivity coefficients.

نویسندگان

Reza Ansari

Department of Mechanical Engineering, University of Guilan, P.O. Box ۳۷۵۶, Rasht, Iran

Saeed Rouhi

Young Researchers and Elite Club, Langroud Branch, Islamic Azad University, Langroud, Guilan, Iran

Masoud Ahmadi

Department of Mechanical Engineering, University of Guilan, P.O. Box ۳۷۵۶, Rasht, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • S. Iijima, Helical microtubules of graphitic carbon, nature, Vol. 354, ...
  • M. Mohammadi, M. Goodarzi, M. Ghayour, S. Alivand, Small scale ...
  • M. Mohammadi, A. Farajpour, M. Goodarzi, R. Heydarshenas, Levy type ...
  • S. R. Asemi, M. Mohammadi, A. Farajpour, A study on ...
  • M. Mohammadi, A. Moradi, M. Ghayour, A. Farajpour, Exact solution ...
  • M. Goodarzi, M. Mohammadi, A. Farajpour, M. Khooran, Investigation of ...
  • M. Mohammadi, A. Farajpour, M. Goodarzi, H. Mohammadi, Temperature effect ...
  • P. Malekzadeh, A. Farajpour, Axisymmetric free and forced vibrations of ...
  • M. Mohammadi, M. Safarabadi, A. Rastgoo, A. Farajpour, Hygro-mechanical vibration ...
  • M. Safarabadi, M. Mohammadi, A. Farajpour, M. Goodarzi, Effect of ...
  • M. Baghani, M. Mohammadi, A. Farajpour, Dynamic and stability analysis ...
  • M. R. Farajpour, A. Rastgoo, A. Farajpour, M. Mohammadi, Vibration ...
  • M. Danesh, A. Farajpour, M. Mohammadi, Axial vibration analysis of ...
  • H. Moosavi, M. Mohammadi, A. Farajpour, S. Shahidi, Vibration analysis ...
  • A. Farajpour, A. Rastgoo, M. Farajpour, Nonlinear buckling analysis of ...
  • S. Rouhi, Y. Alizadeh, R. Ansari, On the interfacial characteristics ...
  • S. Rouhi, Y. Alizadeh, R. Ansari, Molecular dynamics simulations of ...
  • S. Rouhi, Y. Alizadeh, R. Ansari, On the elastic properties ...
  • S. Rouhi, Y. Alizadeh, R. Ansari, M. Aryayi, Using molecular ...
  • S. Rouhi, R. Ansari, M. Ahmadi, Finite element investigation into ...
  • R. Ansari, S. Rouhi, M. Eghbalian, On the elastic properties ...
  • S. Rouhi, S. H. Alavi, On the mechanical properties of ...
  • M. Ahmadi, R. Ansari, S. Rouhi, Finite element investigation of ...
  • R. S. Ruoff, D. C. Lorents, Mechanical and thermal properties ...
  • J. Che, T. Cagin, W. A. Goddard III, Thermal conductivity ...
  • K. I. Winey, T. Kashiwagi, M. Mu, Improving electrical conductivity ...
  • S.-Y. Yang, C.-C. M. Ma, C.-C. Teng, Y.-W. Huang, S.-H. ...
  • A. M. Marconnet, N. Yamamoto, M. A. Panzer, B. L. ...
  • W. Park, K. Choi, K. Lafdi, C. Yu, Influence of ...
  • R. Gulotty, M. Castellino, P. Jagdale, A. Tagliaferro, A. A. ...
  • H. Liem, H. Choy, Superior thermal conductivity of polymer nanocomposites ...
  • S. Araby, Q. Meng, L. Zhang, H. Kang, P. Majewski, ...
  • R. S. Kapadia, B. M. Louie, P. R. Bandaru, The ...
  • P. Ding, S. Su, N. Song, S. Tang, Y. Liu, ...
  • Y. Çelik, A. Çelik, E. Flahaut, E. Suvaci, Anisotropic mechanical ...
  • T. C. Clancy, T. S. Gates, Modeling of interfacial modification ...
  • A. Bagchi, S. Nomura, On the effective thermal conductivity of ...
  • C. Guthy, F. Du, S. Brand, K. I. Winey, J. ...
  • J. Yu, T. E. Lacy Jr, H. Toghiani, C. U. ...
  • B. Mortazavi, M. Baniassadi, J. Bardon, S. Ahzi, Modeling of ...
  • B. Mortazavi, J. Bardon, S. Ahzi, Interphase effect on the ...
  • B. Mortazavi, O. Benzerara, H. Meyer, J. Bardon, S. Ahzi, ...
  • B. Mortazavi, F. Hassouna, A. Laachachi, A. Rajabpour, S. Ahzi, ...
  • E. Fiamegkou, N. Athanasopoulos, V. Kostopoulos, Prediction of the effective ...
  • I. E. Afrooz, A. Öchsner, Effect of the Carbon Nanotube ...
  • Y. Wang, C. Yang, Q.-X. Pei, Y. Zhang, Some aspects ...
  • M. A. Osman, D. Srivastava, Temperature dependence of the thermal ...
  • A. Dawson, M. Rides, J. Urquhart, C. Brown, Thermal conductivity ...
  • Y. S. Song, J. R. Youn, Evaluation of effective thermal ...
  • نمایش کامل مراجع